044 209 91 25 079 869 90 44
Merkliste
Die Merkliste ist leer.
Der Warenkorb ist leer.
Kostenloser Versand möglich
Kostenloser Versand möglich
Bitte warten - die Druckansicht der Seite wird vorbereitet.
Der Druckdialog öffnet sich, sobald die Seite vollständig geladen wurde.
Sollte die Druckvorschau unvollständig sein, bitte schliessen und "Erneut drucken" wählen.

Intermediate Mechanics of Materials

BuchGebunden
Verkaufsrang86747inTechnik
CHF127.00

Beschreibung

This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions.



With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways ofgetting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end.



In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effectof manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load.

Additional material can be found on http://extras.springer.com/ .
Weitere Beschreibungen

Details

ISBN/GTIN978-94-007-0294-3
ProduktartBuch
EinbandGebunden
Erscheinungsdatum11.11.2010
Auflage2nd ed. 2011
Reihen-Nr.175
Seiten618 Seiten
SpracheEnglisch
MasseBreite 155 mm, Höhe 235 mm
Gewicht2340 g
Artikel-Nr.10525075
KatalogBuchzentrum
Datenquelle-Nr.9842689
WarengruppeTechnik
Weitere Details

Reihe

Über den/die AutorIn

Jim Barber graduated in Mechanical Sciences from Cambridge University in 1963 and joined British Rail, who later sponsored his research at Cambridge between 1965 and 1968 on the subject of thermal effects in braking systems. In 1969 he became Lecturer and later Reader in Solid Mechanics at the University of Newcastle upon Tyne. In 1981 he moved to the University of Michigan, where he is presently Professor of Mechanical Engineering and Applied Mechanics. His current research interests are in solid mechanics with particular reference to thermoelasticity, contact mechanics and tribology. He is a chartered engineer in the U.K., Fellow of the Institution of Mechanical Engineers and has engaged extensively in consulting work in the field of stress analysis for engineering design.